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GLOSSARY OF SYMBOLS

t denotes a decision-maker

i denotes an alternative

z ti
vector of variables characterizing decision-maker t and
alternative i

T population of decision-makers

C choice set

z
t

matrix consisting of vectors z
fc ^

for all ieC

Z
o

collection of attribute matrices z t faced by all decision
makers in T

Z complete attribute space, of which ZQ is a subset

f (i,z) joint generalized probability density of i and z in population

P(i | z) the choice model predicting probability i is chosen given z

p(z) generalized probability density of z in population

e* a vector of unknown parameters

e an estimate of 9*

p(z) the generalized probability density of z after a policy change

0(i) expected fraction of population choosing alternative i

Q(i) the expected fraction of population choosing i after a policy
change

( CxZ)
b

the b-th subset of CxZ

B the number of subsets of CxZ

Hb the fraction of the sample drawn from the b-th subset of CxZ

H the vector (H^, ... ... Hg)

N the total sample size

Nb the number of observations drawn from the b-th subset of CxZ
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T
b

the sub-population of T in the b-th subset of CxZ

(1
n ’ Z

n ) an observation from the population corresponding to the n-th
observation drawn from the b-th subset of CxZ

Fb the fraction of the population who are members of

F the vector (F-^ F
2 ,

... F
fe

, ... Fg)

L the likelihood of a stratified sample

L
r

the likelihood of a random sample

Le the likelihood of an exogenous sample

L
c

the likelihood of a choice-based sample

Z
b

the b-th subset of Z defined for an exogenous sample

C
b

the b-th subset of C defined for a choice-based sample

g(z) the sample distribution of z in an exogenous sample

y(z) a function mapping old attribute values into new ones

zk the k-th entry in the attribute vector z

Q(i) an estimate of Q(i) from a sample enumeration

*(z) cumulative distribution of attributes in the population

^(z|b) cumulative distribution of attributes in b-th subpopulation

5(z|b) empirical distribution in subsample drawn from (CxZ)g

x(z) any vector valued function of the attribute vector z

E(x) the expected value of x

E (x | b) the expected value of x in the b-th subpopulation

|c| the number of alternatives in the choice set

zm the population median for z

z
o

any particular value of z

Y the dependent variable in a linear model

B a vector of parameters in a linear model
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£ a disturbance term

V(E) variance of e

2

a an unknown scalar multiplier of variance of £ in the linear
model

G
2

a known matrix, where V(e) = a G in the linear model

D a function which is strictly increasing in each of its arguments

Z i~ Z
j

the difference between the attribute vectors for the i-th and
j-th alternative

(J)* a vector of parameters with same number of entries as z-j_-zj

Y*i . Y*j alternative specific constants for the i-th and j-th alternatives
respectively

U
i

the random utility of the i-th alternative

I an identity matrix of dimension | C
| —

1

V(z) the expected sampling variance of attributes across alternatives

Z
ij Z

i
' z

j

Z
1

the post-experimental range of z

a subset of 0*, the parameter vector

F(i,z) the post-experimental distribution of z in the population.
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EXECUTIVE SUMMARY

In the past five to ten years, significant advances have been made

in the development of discrete choice models for travel demand analysis.

Discrete choice models represent the choices of individuals among alter-

natives such as modes of travel, auto types and destinations. As these

models (such as multinomial logit) continue to be applied in practice,

there is a growing need for a coherent theory of how data should be

used in discrete choice analysis and for practical guidance in the collection

of such data.

The problems associated with designing samples are exemplified by

the Urban Mass Transportation Administration's Service and Methods

Demonstration Program. Under this program, changes in the transporta-

tion services provided in an urban area are made, and the resulting

shifts in level of service and user response are monitored. Data is

collected in such experiments in order to evaluate the impacts of the

changes and to generalize the results to other situations. The problem

of how to collect useful data in a cost-effective manner is critical in

such evaluation efforts.

This paper is an effort to synthesize the state of the art in

sample design for one major aspect of evaluating transportation system change,

traveller behavior. The paper focuses on discrete choice analysis of tra-

vellers' decisions. It incorporates recent published and unpublished theo-
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retical findings as well as some new results. In addition, it addresses

the practical concerns which arise in designing and using data samples

in travel demand analysis.

A basic assumption of discrete choice analysis is that within any

population, it is possible to characterize any individual by both a

list of attributes such as income, auto ownership, travel

time, and costs by various modes, etc., and an actual choice

of a discrete alternative. Throughout the paper, it is presumed that the

primary motivation for sampling is to learn something about the charac-

teristics of the population, the attributes of the alternatives indivi-

duals face, and the choices they make. A central hypothesis in discrete

choice analysis is that there is a causal link, in which the probability

of each individual choosing any particular alternative (termed a choice

probability) depends on his/her attributes; changes in the attributes

will therefore change the choice probabilities.

Given these assumptions, the goal of any particular data collection

scheme is fairly clear. The analyst seeks to learn about (1) the

distribution of attributes in the population, and (2) the choice proba-

bilities for the population. For example, the most traditional approach

of survey data collection for transportation planning has been the home

interview survey. This provides estimates of the distribution of attributes

such as income, auto ownership, household size, age, sex, race, etc.,

in the metropolitan area. This data, along with level of service estimates

(typically derived from skim trees), provides a relatively complete

estimate of the distribution of attributes in the population. This data can
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then also be used to infer choice probabilities for the population using

models such as multinomial logit, in which the probability of any member

of the population selecting an alternative (e.g. driving alone, carpooling, and

using transit) depends on the attribute values.

The home interview survey, however, is just one of a number of

sampling strategies of potential use in inferring both the distribution of

attributes and choice probabilities. Given this, the paper considers

four interrelated questions;

1. What different sampling strategies for discrete choice analysis
exist?

2. How can different sampling strategies be used to estimate the

distribution of attributes in the population?

3. How can different sampling strategies be used to estimate
choice probabilities?

4. What is the role of experimentation in improving travel demand
analysis ?

Each of these questions is considered below.

1. What different sampling strategies exist?

The review deals with a very broad class of sampling strategies (termed

stratified sampling, which includes as special cases random sampling, exogeneous

sampling and choice-based sampling. In stratified sampling, the data

sample is assumed to be obtained by the following four steps:

a) Divide the entire population into groups based on both their
attributes and the decisions made.

b) Choose how many people are to be sampled from each group.

c) Within each group, sample the preset number of people at random.

d) For each person, observe his/her attributes and the choice he/she
made

.

It is important to note that the strata into which the population is

divided can be defined by both attributes and choices. In mode choice.
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for example, one stratification might be to split the population into

high and low income travellers; another might be to define transit users

and highway users as distinct groups. Stratifications based on combina-

tions of attributes and choices are also feasible.

The first, and most widely used special case of general stratified

sampling is random sampling, in which the entire population is a single

stratum. The second is exogenous sampling , (e.g., home interview

surveys), in which the stratification is based solely on attributes, not

on actual choices. The third is choice-based sampling (e.g., on-board sur-

veys) , in which the stratification is based on choices but not attribu-

tes .

It is important to stress that in stratified sampling, one can

control two items, the definition of the strata, and the size of the

sample within each stratum. The analyst does not control which decision-

makers are actually sampled in each stratum, since these are drawn at

random.

2. How can different sampling strategies be used to infer the distribution
of attributes in the population ?

There are two general approaches to using stratified samples to

estimate the distribution of attributes in the population. The simple,

less general method is to constrain the sample design such that

the fraction of observations in each stratum equals the corresponding

population fraction. In this case, the resulting stratified sample can

be used as "representative" of the population.

The second more general approach involves use of a simple

probability statement to solve for the population attribute distribution

as a weighted sum of the attribute distributions within the strata. The

xii



weights in this case are the fraction of the population in each stratum.

In both these approaches, the analyst must know the share of

population in each stratum. At least four approaches to determining these

shares are available.

a) Use existing data sources which yield direct information on strata
shares (such as the census for geographical-based stratifications)

b) Use a random sample (such as a telephone survey) to estimate the

share of the population in each stratum.

c) Use published statistics and solve a set of linear equations
derived from probability theory for population shares.

d) Estimate the population fractions simultaneously with the choice
model

.

Each of these techniques has both strengths and weaknesses described

in the paper, but some may not be applicable to all situations.

3. How can different sampling strategies be used to estimate the choice

probabilities ?

In almost all cases of practical interest, the problem of determining

choice probabilities reduces to one of estimating, or calibrating, the

parameters of some model. For example, in mode choice analysis, the choice

probabilities might be represented by the multinomial logit model, and

the coefficients of the model would have to be estimated.

A number of significant theoretical advances have been made in this

area. Perhaps the most significant conclusion is that, under certain

technical restrictions, any stratified sample can be used to estimate

discrete choice models . This includes random, exogenous, choice-based,

and mixed sample designs.

Given that any stratified sample may be used, a related question

is how to select the "best" sample design. Major observations in this

area include the following:
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a) The existing literature on sample design is based on the classical
criterion of minimizing the variance of parameter estimates.

b) Mathematical results have been difficult to achieve and are still
limited

.

c) Prior information about the shares of the population in the strata
and the distribution of attributes in the population can improve
parameter estimates.

d) The "best" sample design (by the classical criterion) depends on
the true parameter values, which are obviously unknown a priori .

This contrasts with hhe standard linear regression model, in which
an optimal sample design can be easily derived and does not depend
on the actual model parameters.

e) Limited Monte Carlo tests suggest that for binary choice models
estimated with choice-based samples, it is advantageous to make
sample shares close to 1/2, and that prior knowledge of the share
of the population choosing each alternative is very valuable.

f) If one wants to choose a sample to test the hypothesis that a

particular model as a whole is more informative than a model in
which the choice probabilities for every individual equal the
corresponding population shares, the best sample includes decision-
makers facing widely disparate alternatives. This result does
not apply to samples designed to test other hypotheses.

4. What is the role of experimentation in improving travel demand forecasts?

A significant problem in discrete choice analysis is that under some

conditions it is impossible to estimate certain parameters. This situation

(termed non-identif icatiorj)
, can arise in four important ways:

a) The alternatives everyone faces are homogeneous along some attribute.
For example, in analyzing taxi users' choice of which cab company
to call for service, it would be impossible to determine the effect
of fare differences (with corresponding variations in service
quality) across taxi operators. Due to local regulatory policy,
all companies provide roughly homogeneous service at the same price.

b)An attribute of a particular alternative is constant for all decision-
makers. For example, in most cities, transit systems do not offer
any demand responsive services, while the auto mode is by its very
nature demand responsive. In this case, it would be impossible to

estimate mode choice probabilities for route deviation bus service.
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c) Two attributes are perfectly correlated. For example, in many

small cities where congestion is minimal, taxi fare (based on

meters) may for all practical purposes be perfectly correlated
with in-vehicle travel time. Car times and operating costs would
be similarly correlated. Thus, it would be impossible to dis-
tinguish between the effects of time and cost in a choice model.

d) Alternatives are unavailable. For example, some cities do not
have any transit service at all, and the demand for such service
would be impossible to determine.

It is important to point out that carefully thought out experiments

can be used to create situations in which previously unestimable para-

meters of discrete choice models can be estimated. Many of the current

Service and Methods Demonstration projects serve precisely this function.

By changing current attributes for a small group within a larger population

and estimating a discrete choice model, it is then feasible to forecast

how the entire population will respond to area-wide implementation.

Experiments can also provide a way to achieve greater confidence in

parameter estimates. In many situations, some parameters are technically

identified, but the amount of variation in the data is too low to make

precise parameter estimates feasible.

Some Practical Considerations

All of the above discussion is based on theoretical results. It is

important to emphasize that given the current state of the art, there is

no general rule for selecting the best sample design for discrete choice

analysis problems. In fact, given the analytic intractability of many of

the sample design problems, it is unlikely that a rule for optimal sample

design will be found in the near future. However, some general practical

guidelines can be proposed:
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a) It is obvious that the first concern in designing a sample
must be to assure that a model can be estimated at all (i.e., that
the model parameters are identified in the sample).

b) The duration of experiments must be carefully considered. Exist-
ing discrete choice models are for the most part static in structure,
and any dynamic effects in the period between implementation and
response cannot be reflected.

c) The classical statistical framework should not be applied dogmati-
cally. In most cases, the analyst has more information than classi-
cal statistical analysis presumes. For example, in most cases,
some a priori statement about the sign and magnitude of certain
parameters will be possible. This information should be used
if only in an intuitive way.

d) A particular sample may be used for estimation of both the attri-
bute distribution and the choice probabilities. A "good" sample
design must balance these uses.

e) In many cases, the idealized stratified sample may be difficult
to obtain. In particular, stratified sampling requires the ability
to identify the stratum to which a decision maker belongs and the
ability to draw at random from each stratum. The last requirement

is often violated in common survey practices such as roadside interviews,
on-board surveys, and mailback questionnaires.

It is important to note that many of the results reported here are

quite recent, and that further work will undoubtedly resolve some of the

questions raised in the report. Discrete choice analysis is still a quickly

growing area of knowledge, and further work on sample design problems

will hopefully make more precise statements about alternative sampling

strategies possible. In particular, further work in classical sample de-

sign analysis, non-classical sample design criteria (e.g., use of Bayesian

analysis), further Monte Carlo studies, and a broader base of actual ex-

perience with different stratified sampling rules should yield greater

insight into sample design for discrete choice analysis.

xv 1



1. INTRODUCTION

This paper summarizes recent advances in the theory of sample design for

discrete choice analysis and discusses the relevance of these advances for

the practice of travel demand forecasting. The objective of the summary is

to provide a general framework for analyzing existing data, and designing new

samples

.

The issues that arise in designing useful, cost-effective samples are

exemplified by the Urban Mass Transportation Administration's Service and

Methods Demonstration Program. The types of transportation system changes

introduced under this program influence both the performance of the transpor-

tation system and the population's response to that system. In evaluating

such projects, a relatively large base of data must be collected, and the

cost and accuracy of the resulting samples may critically influence the

success or failure of the entire evaluation effort.

Moreover, in many demonstrations, the impact of the transportation sys-

tem change is confounded with the effect of other, exogenous changes which

occur over the demonstration period. This is particularly the case when the

population's response to the system change is being measured. For this

reason, the data collection strategy must often provide an adequate base to

support a multivariate analysis of traveller response. Discrete choice ana-

lysis has enormous potential for providing evaluations of population response

in such situations.

In developing this review, an effort is made to recognize the distinc-

tion between the idealizations imposed by formal theory, and the real world

issues arising in practice. Discrete choice models rest on a set of assump-
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tions about the population and its behavior. In interpreting the theory

of sample design, one must keep in mind that this theory relates to the

idealized world of formal analysis. The application of sample design theory

to actual travel demand forecasting problems is, if anything, an art.

Our first task, undertaken in Section 2, will be set to out

the idealized probability model assumed in formal discrete choice analysis.

The analyst will usually attempt to specify a model which accurately

represents the actual population of interest, but at the same time is

simple enough to provide a useful tool for forecasting. In most applied

contexts, however, the analyst's knowledge of the actual population will

not suffice to totally specify a satisfactory probability model and its

parameters a priori. From this, the purpose of data collection

emerges, that is to allow one to learn more about the population and

consequently to improve one's ability to forecast how that population

will respond to transportation system changes.

Our second task, addressed in Section 3, will be to describe

some of the alternative sampling rules that can be used in data collection.

Attention will be focused on rules in which the population is stratified in

some way, and observations are then drawn at random within stratifications.

This wide class of sample designs includes almost all currently used

methods in transportation planning. For example, a home interview survey

is typically performed by sampling randomly from the entire relevant popula-

tion; on-board surveys are random samples from the stratum of transit users.

For the purposes of this review, it is useful to separate the travel

demand analysis process into two phases. First, there is a population

description phase in which one formally characterizes the decision making

2



population and the travel alternatives its members face. This character-

ization can include distributions of socioeconomic attributes such as

income, auto ownership, or household size, as well as level of service

variables such as time and cost. Second, there is a choice modelling

phas e in which one specifies a model of travel behavior (e.g. logit or

probit), and estimates its unknown parameters. A need for data samples

may appear in both of the phases. Sections 4 and 5 respectively, con-

sider in detail the sample design problem that arises in the two phases

of travel demand analysis. In these sections the known theoretical

results on sample design are collected, and those respects in which sampling

must remain an art are articulated.

Usually the travel demand forecasting process draws its data from

observations of travel behavior under whatever travel environment

happens to prevail at the time of data collection. Sometimes, however,

the existing travel environment does not contain a range of attributes

sufficiently varied to permit inference of travel behavior to proceed.

In such circumstances, an additional phase may usefully be added to the

analysis process. This is an experimentation phase in which the existing

travel environment of a subset of the population is artif ically modified

so as to create the variation in travel alternatives needed to support

behavioral modelling. In Section 6, we examine issues in the design of

such experiments and their role in the forecasting process. Directions

for future research are indicated in Section 7.

The theoretical results on sample design reported in this paper

are drawn from a number of sources. In particular, we draw heavily from

Lerman, Manski and Atherton (1975), Manski and Lerman (1977), Manski and

McFadden (1977), and Cosslett (1977). Some of the work presented here is

new and has not previously been reported.

3



2. PROBABILITY MODEL

The probability model underlying modern discrete choice

analysis of travel behavior has been laid out in a general form in

Manski and McFadden (1977) and is summarized here.

It is assumed that an idealized decision making population, repre-

senting the actual population of interest, has been defined. Each

member of this idealized population faces a common, finite set of

travel alternatives. Let T designate the population and C the choice

set. With each decision maker teT and alternative i£C there is

associated a vector z . which characterizes the decision maker and
ti

the alternative. Let z^ = (z^, ieC) be the matrix of attributes charac-

terizing decision maker t's choice set and let Z
o
=(z^_, teT) be the collection

of attribute matrices faced by the various decision makers in T. Finally,

let Z denote the attribute space, in which Z is a subset of Z. That is,
o

Z is a collection of attribute matrices including at least those currently

faced by decision makers. Usually, Z will be defined so as to encompass

attributes that might be found among the population in the future as well

as those included in Z .

^

o

In actual applications, the definition of T (the decision-making popu-

lation), C (the choice set) and Z (the attribute space) varies considerably.

For example, in an analysis of mode choice for work trips, T may include

all workers travelling on a particular day to or from their place of employ-

ment. The choice set modes such as driving alone, transit, and carpooling. The

attribute space may include times, costs, etc., for each mode, socioeconomic

characteristics such as income and auto ownership, as well as functions of both these

^An integral part of the sample design problem is to decide what attributes of

decision makers and alternatives should be obtained in the data collection
process. Thus, the structure of the attribute space Z is under the potential
control of the analyst. This aspect of sample design will not be discussed in
this paper. Instead it will be assumed that a structure for Z has somehow been

chosen.
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types of attributes.

Using this notation, the basic probabilistic assumption is that the

frequency distribution of choices ( i )» and attribute matrices (z) in the

actual population can be characterized by a generalized probability density

(1) f(i, z) = P(i|z) p(z)

defined over C x Z.

In discrete choice analysis, the decomposition of the joint density

f(i,z) into the product of the conditional probability P(i|z) and the

marginal density p(z) is of particular importance. In discrete choice

analysis, P(i|z) is not simply a conditional probability; it is rather

the probabilistic prediction of a behavioral model describing how a

decision maker with associated attributes z would select among the

alternatives in C. For the above reason, P(i|z) is often termed a

"choice probability". In most applications, the behavioral model generating

P(i|z) is a priori specified by the analyst to be a member of a para-

metric family, implying that P(i|z) itself is known up to this family. For

example, one might assume that the choice probabilities have the conditional

logit form, where

P(i | z)

ti

I e

jeC

z .0*
ti

where 0* is a vector of unknown parameters. In this case, the choice

probability may be written as P(i|z, 0*).

Consider now four basic assumptions of the above, general model.

One seemingly restrictive assumption, namely that all members of T face

5



the same choice set C, is actually innocuous. To see this, observe that

the attributes can vary with each individual t. Also, observe that if

some alternative j is "unavailable" to a decision maker t, this fact can

be reflected in the value taken by z^, and we can set P(j|z) = 0 in this case.

For example, the alternative of driving alone is for obvious reasons

generally assumed to be unavailable to travellers without access to an

automobile. This can be reflected in the choice model P(j|z), where

j
= driving alone, by defining one attribute in z to be auto availability,

and defining P(j|z) = 0 when this attribute is zero.

^

In most applications, the decision making population of interest

is relatively large. It then becomes analytically convenient, and

basically innocuous, to let the idealized population T be infinite so

distinctions between sampling with and without

replacement can be ignored. With this second assumption of T possibly

infinite, it is natural to characterize the distribution of attributes

2in the population by a generalized probability density p(z).

As Manski and McFadden (1977) emphasize, the application of discrete

choice analysis does require one crucial assumption not imposed in the

general statistical analysis of discrete data. This is the postulate

(typically derived from some behavioral theory) that the probability

P(i|z) reflects a "causal" link between the independent variables z and

the choice of any alternative ieC. Moreover, it is implicit in the use

1 .

At the extreme, some alternative may be currently available to no decision
maker in T. Nevertheless, it would still be desirable to formally include
such an alternative within the choice set if the alternative might become
available in the future.

2 -A gen era 1i zed~probability density is simply a mixture of a probability

distribution assigning positive probability to a finite set o points

in Z and an ordinary probability density function over Z. This assump

tion, like that of infinite T, can generally be accepted without concern.
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of the model to make forecasts that this link will continue to hold even

if the joint distribution of (i,z) pairs in the population is changed.

This third assumption provides the basis for the use of discrete

choice analysis as a tool in travel demand forecasting. Under the

behavioral postulate, changes in transportation policy may modify

people's travel environments, as expressed in the attribute distribution

p(z), but do not change their behavior, as expressed in the choice

probabilities P(i|z). Thus, if the choice probabilities are known to the

analyst, and if the effect of a policy change on the attribute distribu-

tion can be determined, the effect of that policy change on travel

choices can be predicted.

For example, assume that the initial attribute distribution is p(z),

that a proposed policy change will modify it to p(z), and that we wish

to predict the effect of the policy change on the fraction of the popula-

tion making various travel choices. In more concrete terms, p(z) could

include the distribution of travel cost in the population before some

pricing change, and p(z) would be the same distribution after the change.

For any alternative i£C, the expected fraction initally choosing i is, by

definition, Q(i) = P(i|z) p(z) dz. Given the behavorial postulate, the

predicted post-policy fraction is:

Q (i) = /
z

P (i | z) p(z) dz.

A fourth assumption implicit in discrete choice analysis as currently

practiced deserves comment. The probability model we have set out is

static, that is, it describes the population's travel environment and

behavior in a manner which ignores time. Recently, researchers have begun

7



to develop discrete choice models which explain sequences of choices over

time, and attempt to realistically incorporate dynamic aspects of

behavior?" Because research on dynamic choice analysis is still in its

infancy, and because no corresponding literature on sample design has yet de-

veloped, this paper confines its attention to the less general but

quite rich models of static choice analysis.

With the probability model of discrete choice analysis now laid

out and interpreted, the formal objectives of data collection can now

be expressed. These are first to learn the form of the attribute dis-

tribution p(z), and second to learn the choice probabilities P(i|z).

Where, as is usual, the choice probabilities are a priori given the

parametric form P(i|z, 0A ) , the second objective reduces to one of

estimating 0*. The design of samples meeting the above objectives

will be examined as soon as we have, in the next section, introduced

a class of sampling rules suitable for investigation.

1

See for example, Heckman (1977).
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3. CLASS OF STRATIFIED SAMPLING RULES

Within the general model developed above, one can view the process of

sampling as drawing observations on individuals (as described by their attri-

butes z) and their respective choices i£C. Observations are (i,z) pairs,

from which the probabilities p(z) and P(i|z) may be learned. For example,

in a typical application, an observation might consist of a traveller with

a known mode choice among carpooling, driving alone, and transit, along with

associated attributes such as times and costs on each mode, as well as the

traveller's socioeconomic characteristics.

In describing alternative sampling rules, we shall first present a

relatively abstract theoretical development, and then illustrate that theory

with a brief example. Finally, we shall consider the most useful practical

cases within the class of rules to be considered.

The existing theoretical literature on sample design in discrete choice

analysis essentially assumes that such observations are drawn in the follow-

ing manner :

^

First, the analyst partitions the set C x Z, consisting of all possible

choice-attribute pairs, into a collection of B mutually exclusive and ex-

haustive subsets (C x Z)^, b = 1,....B. Such a partitioning is conventionally

termed a "stratification" of C x Z.

Second, the analyst selects a set of sampling fractions

(H
, b = 1,

b

Then

,

. . . B) such

for each b=l

V ^
that l H = 1, and a sample size N.

b=l

,...B, a total of • N decision makers are inde-

pendently drawn, at random, from T^ , the sub-population of T defined by

T, = ( teT : (i . z ) e (C x Z) , ).
b t t b

See Manski and McFadden (1977), for a formal presentation.
2
The sampling fractions may be set directly or may themselves be determined by
an auxiliary exogenous process. In the former case, we speak of a "single stage"
stratification; in the latter case, a "multi-stage" one. Cluster sampling is one
type of multi-stage process.
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Finally, for each sampled decision maker, the associated choice-

attribute pair is observed. Thus, a sample (i , z ), n = 1 , . . . N , b = 1,...B
n n b

of such pairs is produced.

Consider again the example of a simple mode choice model in which tra-

vellers choose among ride sharing, driving alone and carpooling. Furthermore,

assume that time, cost, income and auto ownership are the only relevant vari-

ables in the model. In this example, the set C x Z would be all feasible

combinations of modes and their attributes.

In Figure 1, the modes in C are rows and the attributes Z are columns.

Display of C x Z

1

It would be notationally more proper to write (ih^> Zn^) * n^ = 1 , . . , b = l,...B.
For simplicity, the subscript b on n is omitted.
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Thus, Z consists of eight separate components, seven of which are for all

practical purposes continuous and one of which, auto ownership, is discrete.

Any particular observation of an (i , z) pair in C x Z would consist of the mode

chosen also the eight modal and socioeconomic attributes of the sampled indi-

vidual .

The simplest possible stratification of C x Z would be to define only

one stratum consisting of all of C x Z. The corresponding sample would

be drawn randomly from this single strata.

A second stratification rule might define three income groups, as follows

(C x Z)
i

= all (i,z) pairs with income $7500

(C x Z)^ = all (i,z) pairs with income between $7500 and $15,000

(C x Z) = all (i,z) pairs with income > $15,000

Still a third possible stratification might be to define modal users groups,

such as:

(C x Z) = all carpool users

(C x Z)
^

= all drive alone users

(C x Z)^ = all transit users.

11



Further examples can include mixtures of the above such as follows:

(C x Z)
^

= all transit users with income .< $7500

(C x Z)^ = everyone else

In each of these examples, B would equal the number of strata, and , b = 1,

B would be the relevant subsets of the population.

The class of stratified sampling rules in general and the most relevant

special cases in particular offer an enormous range of sample design pos-

sibilities to the analyst. Of course, many interesting rules lie outside the

stratified class. Some attention has recently been given to samples created

by mixing stratified sub-samples of different types. In particular, the so-

called "enriched" samples, in which a sample of users of one alternative in C and a

random sample are combined, have been studied by McFadden (1977), and Cosslett

(1978a).

There may in some circumstances be advantages to using sampling strate-

gies in which the sample size is determined as part of, rather than prior to

the actual data collection. While sampling with so-called "informative

stopping rules" has been analyzed in many statistical contexts (in particular,

see DeGroot (1970)), no research on the use of such rules in discrete choice

analysis has been performed.

The discussion of sample design in this paper concerns itself

exclusively with sampling rules of the stratified class. Before

introducing those special cases of this class, which have been found most

useful for applications, three general observations are in order.

First, it is important to distinguish what aspects of the sampling pro-

cess the analyst does and does not control. What he does control is the

12



stratification (C x Z) , b = 1 , . . . B and the number of decision makers Nb b

to be drawn from each sub—population T . What he does not control are the
b

identities of the decision makers then drawn. These drawings are to be in-

dependent and at random. Thus, the sample likelihood is:

B Nb f(i , z )

(2) L = tt tt —
n=l

*

«bb= 1
" *

‘b

where is the fraction of the population T who are members of T^. To see

that equation (2) is the sample likelihood, consider the likelihood of any

observation drawn via a stratified sampling rule. This is the probability

that the stratum (C x Z)^ containing the observation is selected, times the

conditional likelihood of drawing the observed (i,z) pair out of this stra-

tum. The former probability is the sampling fraction . The latter con-

ditional likelihood is
F

• Since observations are drawn independently,
F
b

equation (2) follows. We note for later use that the population fraction

F can be expressed as an integral of the joint distribution f(i,z), over the
b

subset (C x Z), , that is:
b

F
b

=
(C x Z)/f(i ’ z > d(i ’

z >

b

Second, one should understand why samples produced by stratified

sampling rules yield information about P(i|z) and p(z). The reason, very

simply, is that the sample likelihood (2) is a function of the density values

f(i ,z ), n= 1 , . . . N. , b=l,...B, and of the population fractions F, , b=l,...B;
n n b b

these values are, of course, functions of P and p through equation (1). Note

that the sample likelihood also depends on the stratification imposed, on the
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sampling fraction H^, b=l,...B, and on the sample size N. The sample design

theory discussed in this paper can usefully be viewed as the study of how these

control variables should be chosein so as to yield likelihoods with desirable

properties

.

Our third observation is an operational one. In order to apply a strati-

fied sampling rule, the analyst must have a viable procedure for sampling at

random within each of the sub-populations T^, b = This requirement

is sometimes difficult to meet, either because there are problems in effect-

ively separating the various sub-populations from one another, or because a

suitable mechanism for selecting decision makers independently at random is

elusive. These operational concerns in sampling will be discussed further

in Section 4.1.1.

Among the class of all stratified sampling rules, three types are of

particular applied interest. These are:

3.1. 1. Random Sampling : The stratification of C x Z is the trivial case in which

the entire population is a single stratum. In this case,

B = 1 and (C x Z)
^

= C x Z.

Then F = / f (i,z)d(i,z) = 1, and H = 1, so the sample likelihood (2) reduces

CxZ
1

to

(3)

N
= TT

n=l
P<V Z„> p(z„>-

3.1.2. Exogenous Sampling : The analyst partitions the attribute space Z into

mutually exclusive and exhaustive subsets Z, , b = 1,...B> and lets (C x Z), =
b b

C x Z^. That is, the pair (i,z) is included in stratum (C x Z)^ if and only if

z£Z, and the identity of i is not used in defining the stratum. Then
b

F = /f(i,z)d(i,z) = / P (z)dz and the sample likelihood becomes:
b

C x Zk
Z
b

D

14



P (i |z )*t>(z )YL
n n n bB Nb

(4) L = it if

e
b= 1 n=

1

/ p(z) dz

%

This case corresponds to the example of income stratification given above,

where the subsets Z are the three income classes and choice of mode does not
b

affect the stratum to which a member of the population belongs.

3.1.3. Choice Based Sampling : The analyst partitions the choice set C into

mutually exclusive and exhaustive subsets C^, b = 1,...B and lets

(C x Z) = C x Z. That is, (i,z) belongs to (CxZ), if and only if i£Cb . Then
b b

F = / l f (i,z)d(i,z) = / ( l P(i | z) ) p(z)dz and the resulting
b

Z ieCb Z ieC
b

sample likelihood is:

B N
b P(i

n
|z
n

} P(z
n

}

(5) L = TT TT *H *

C
b= 1 n= 1 / ( l P (i | z) )p (z) dz

Z
ieC,

b

This case corresponds to the example of stratification by modal user groups

given above, in which attributes of the modes or decision-makers do not enter

into the strata definitions.

Let us examine these three types of sampling rules. Random sampling, the

simplest, is a fully specified rule. That is, once the analyst is committed

to random sampling, he exercises no further control over the data col-

lection process.

In exogenous sampling, the analyst , through stratification of Z and

selection of the sample fractions , partially controls the sample attribute

distribution p (z)

/ p (z) dz b

Let g(z) designate this sample distribution. Then the exogenous sampling like

lihood can be written in the familiar form
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(6) L
e

B

TV

b=l

N.

77 P ( 1
I
^ ) g ( Z )

i n n n

It has been common, although not strictly correct, to assert that under exo-

genous sampling, the analyst has full control over the sample distribution

g(z), and to represent the sample design problem as one of selecting among

alternatives such as distribution.^ As the above indicates, however, exo-

genous sampling really offers more limited design possibilities, in that only

and the stratification can be controlled, not the entire distribution g(z)

.

In particular, the drawing of observations out of each stratum is done at

random, and hence is not under the analyst's control.

Note that the exogenous sampling likelihood reduces to the random sampling

one if the analyst sets H = F, = /„ p(z) dz, all b = 1, . . .B or, alternatively,
b b Zb

samples so that the density of g will be g(z) = p(z), for all zeZ. Finally,

we remark that the transportation home interview survey is often cited as an

example of exogenous sampling. While this example is often apt, it is not

always proper. In particular, if the choice being analyzed is that of resi-

dential location, then the geographic stratification used in home interview

surveys is choice based rather than exogenous.

Choice based sampling rules give the analyst control over the frequencies

with which the various alternatives in C appear in the sample. The most re-

fined form of choice based sampling is that in which each alternative in C

defines a separate stratum. In this case, B is the choice set size and b=l,

...B indexes the alternatives in C. For this stratification, the choice based

sampling likelihood may be written as follows:

N
i P(i z )p(z )

( 7 ) T = TT TT 3 .H-j.

c
i£c n=l /Z

P(i z)p(z)dz

The choice based sampling likelihood, like the exogenous sampling one, reduces

See, for example, Lerman, Manski and Atherton (1975)
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to that of random sampling in special cases. Specifically, this occurs when-

ever

Hb=Fb =/ ( J P (i | z)) p (z)dz all b =

Z i£C,
b

On board and roadside surveys are often cited as examples of choice based

sampling in transportation. As indicated before, however, even home interview

surveys may in some contexts be choice based.

It is of interest to observe that the sample likelihood associated with

random sampling may be achieved using other stratified sampling rules as well.

In particular, it is easy to see that if the analyst choose any stratifica-

tion and sample composition such that H, - F, , all b=l,...B» then the general
b b

stratified sampling likelihood (2) reduces to the random sampling one (3)

•

Since the sample likelihood embodies all information in the data sample, all

stratified rules satisfying the vector condition H = F where H=(H, ,b=l , . . . B)
b

and F = (F^ ,b= 1 , . . . B) are statistically equivalent.
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4. SAMPLE DESIGN FOR DESCRIPTION OF ATTRIBUTE DISTRIBUTION

The preliminaries for our discussion of sample design in discrete

choice analysis have now been completed and we turn in this section to

the problem of learning the attribute distribution characterized by the

density p(z).^ Organizationally, it is convenient to first treat this prob-

lem within the idealized world of theory, then address the practical

concerns that arise from incompleteness of the theory and divergences

between the idealized and real worlds. This same sequence of presentation

will be followed in the next section when the problem of learning the choice

probabilities is discussed.

4.1 THEORETICAL RESULTS

Let us first recall the reason why we should like to know the attribute

distribution, and clarify the sense in which this distribution is to be

learned.

The travel demand forecasting process requires knowledge of the present

attribute distribution, in order to determine the distribution that would pre-

vail after a hypothesized policy or environmental shift has occurred. Let us

be precise. In discrete choice analysis, a policy shift is simply a function

changing each decision-maker's present attribute value into some new value.

If p(z) is the current attribute density and if y(z) is the function mapping

old into new attribute values, then clearly p and y together determine p,

the post-policy attribute density. For example, the attribute vector z might

til
include as its k entry, z^, the transit fare, which might be 25q currently.

^A technical note is required here. The distribution of attributes in the pop-
ulation may be expressed through a cumulative distribtution function or through
its derivative, the probability density function. While the likelihood of an
observation is defined in terms of the density function, it turns out that for
travel demand analysis, it is the distribution function, not the density, that
must be learned. See Section 4.1.1 for further elaboration of this point.
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If the only policy change being evaluated were a doubling of fare, then

y(z
1 ) would reduce to y, = 2z , and the corresponding post-policy distribution
K. K. K.

of the entire attribute vector, p(y), could readily be derived.

Once p and the (time invariant) choice probabilities P(i|z) are known,

all consequences of the policy shift can be determined. For example, the

new expected share of the population choosing alternative i is defined by

Q(i) = /P(i| z)p(z)dz
Z

Because the attribute distribution simply describes the existing travel

environment and is not derived from any causal model, it is generally assumed

in discrete choice analysis that one knows little, if anything, about the form

of p ( z

)

a priori. In particular, unlike the behaviorally derived choice prob-

abilities, the attribute density is usually not specified to be a member of

any parametric family. Thus, learning the attribute distribution means

learning the whole distribution function, not merely some parameters charac-

terizing this function.

1

How then may we learn the attribute distribution be learned. Two ap-

proaches, both of whitth are correct in theory and useful in practice shall be discussed.

A. 1.1. The Representative Sample Approach

The simpler but less powerful of the two approaches is as follows.

Select a sampling rule such that the likelihood of observing any attribute

value z on each draw is p(z). Then draw an actual sample of decision-makers

according to this rule. Use the resulting distribution of z values in the

sample as an estimate of the attribute distribution in the population.

Note that it will not, in general, be sufficient to learn lower order moments
of p(z), say its mean and covariance matrix. The values we should like to

forecast, such as Q(i), depend on the entire density p and hence on all of p.
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The theoretical basis for the above procedure is the fact that the em-

pirical distribution of z in the sample will in general converge to the

population distribution as the sample size increases. ^ Hence, in large enough

samples, the sample distribution of z will be appropriately "close" to the

population distribution. The procedure is useful in practice because once

the sample is drawn, the analyst can simply treat the sample of decision-

makers as if it were the whole population, and produce forecasts using this

sample. This is the so-called "random sample enumeration" method of fore-

casting. To see how this works, consider the problem of forecasting the

expected share of the population choosing some alternative i after a policy

change. This share, it will be recalled, is Q(i) = / P(i|z) p(z) dz . Given

l
N z

a sample of N individuals, Q(i) = — £ P(i|z
n
). This estimate will be con-

n=l
sistent as long as the sampling rule used satisfies the property described

above
.

^

We now must specify sampling rules which do have the desired property

that the likelihood of observing z is p(z).

Consider the set of stratified sampling rules in which = F , all b=l,

...B. These are rules for which the fraction of the sample in each stratum

equals the share of the population in that stratum. All rules meeting the

condition, it will be recalled, yield the random sampling likelihood in which

the likelihood of any (i,z) observation is P(i|z)p(z). Clearly, the marginal

likelihood of any z observation is J P(i|z)p(z) = p(z). Hence, all strati-
ieC

fied rules satisfying the H=F conditions are appropriate for learning p(z).

Since the set of sampling rules satisfying the H = F conditions are sta-

^See Rao, Section 6f.l, 1973.
2
Note that construction of the estimate Q(i) only requires the empirical dis-

tribution of sample points. It does not require one to estimate the density
p(z) .
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tistically equivalent, the analyst's choice among such rules can, with one

strong caveat, be based on considerations of relative sampling costs. The

caveat is that, given any stratification , the sampling fraction in stra-

tum b is known and under the control of the analyst, but F , the share of
b

the population in stratum b, may not be known. Thus, to devise a sample

with H = F, we must select a stratification for which the values of F, are
b

a priori known. This is certainly a non-trivial requirement, particularly

as the F values are themselves generally functions of the unknown p (z) den-

sity. (The one circumstance in which F is trivially known, is the case of

random sampling where B=1 and F^=l). Nevertheless, the requirement can

often be met in practice. This point will be discussed at length in Section

4.2.2.

4.1.2 Representative Sub-Sample Approach

It is significant that the sampling rules satisfying the H = F condi-

tion are not the only ones from which the attribute distribution may be

learned. In fact, any stratified rule can be used as long as is made

positive whenever F^ is positive. To see this, let (C x Z)^,b=l,...B be

an arbitrary stratification, let 'f(z) be the cumulative attribute distri-

bution in T, and let 'F ( z | b ) designate the cumulative attribute distribution

among decision makers in stratum b. Consider the identity
B

(8) 'F(z) = l Y(z|b)-F
b=l

and observe that in stratified sampling, N, observations are drawn at random
b

from T . The empirical cumulative distribution of z in these N observations,
b b

A

designated 'f(zlb), is therefore a consistent estimate of the sub-population
B A

attribute distribution ’f(z|b). From (8), it then follows that £ yCzIb^F is

b=l
a consistent estimate of the population attribute distribution ^Cz)

.
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What this result implies is that consistent estimates of the distri-

bution of socioeconomic characteristics— such as income and auto ownership,

as well as level of service variables—such as time and cost, can be recovered

from stratified samples as long as the population shares in each stratum are

known. For example, suppose one had a roadside interview, and an on-board

survey (choice-based samples for the car and transit modes respectively)

.

Using the data from these surveys as empirical distributions, and a priori

knowledge of mode shares, equation (8) can be used to estimate the attribute

distribution for the entire population.

To see how the above approach may be used in practice, consider again

the problem of forecasting the post-policy aggregate share Q(i). Observe
B

that Q(i) = (i | b
) *F, where Q(i|b) is the aggregate share choosing i among

b=l
the sub-population T Note that Q(i|b) may be consistently estimated by

N, B

ft(i|b) = — T P(i |z ). Henc^ Q(i) may be estimated by Q(i) = £ §(i|b)»F
N
b n=l " b-1

b

Four remarks should be made about the above procedure. First,

given any stratification, prior knowledge of the F values is required to

implement the procedure. Second, random sampling falls within the class

of procedures as we may simply set B=l. Third, as long as the shares of

the population in each stratum are known, the use of the above procedure

does not require knowledge of the choice process; it is based on a

simple probability identity which does not involve p(i|z). Fourth, for
B A

a given total sample size, the £ T(z|b)- F^ estimates resulting from
b=l

different stratifications and sample compositions are not, in general,

statistically equivalent. ^ Unfortunately, there exists very little

theory to help one select among alternative designs. We shall, however,

offer some heuristic guidance on this question.

^This point is discussed in Section 4.2.3,
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4.2 PRACTICAL CONCERNS

The foregoing theoretical discussion of sampling to learn

the attribute distribution is incomplete as a basis for selecting

sample designs in practice. First, we have as yet said nothing about

the feasibility of implementing stratified sampling rules . Second

,

given any implementable rule, we have not indicated how the require-

ment for prior knowledge of the F values, necessary for estimation

of the attribute distribution, can be met. Third, we have thus far offered no

assistance to the analyst in selecting among those rules which are implement-

able and whose associated F values can be determined. These practical concerns

in sample design are addressed below.

4.2.1 truplem of Implementation^

Given a population T, the process of selecting a stratifi-

cation T, , b=l , . . .B and then sampling at random within each
b

T^ appears deceptively simple. Actually, implementation of this

process always requires careful thought and often some theoretical

compromise . The reason is that in order to sample at random within

a sub-population, one must first be able to isolate this sub-

population for purpose of sampling. In practice, such isolation

is sometimes difficult to achieve.

Two examples will serve to illustrate the point
. Let the

population of interest be the set of all people potentially

making trips within a metropolitan area . First consider strat-

ification based on place of residence. A home interview survey

can easily isolate and sample from the sub -population of potential

The discussion in this section pertains to the problem of estimating the
choice probabilities as well as to that of estimating the attribute
distribution.
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trip-makers who are residents of the area. It is however far

more difficult to isolate and sample from the remaining sub-

population, namely non-residents.

Now consider the same population and let the stratification

be based on the mode used in trip-making on a given day. Transit

users will be relatively easy to isolate because of their physi-

cal proximity in transit vehicles and stations. Automobile users

will generally be more difficult to isolate as a group. Theq, of

course, there is the sub-population who make no trip on the given

day. Non—trip making residents may be isolated through a home

interview survey on that day. How non-trip making non-residents

can be sampled is not clear.

The above examples are fairly typical of the practical difficulties

that may arise in isolating sub-populations. There do exist some

situations in which no practical way can be found to sample from

some sub-population. The non-trip making non-residents in the

above examples may be such a case. In these situations, the analyst

may do one of two things, neither very palatable. First, he may

ignore the problematic sub-population, that is define the population T

so as to exclude it. Second, he may assume that the attribute distribu-

tion in this sub-population is identical to that in some "similar"

sub-population which can be sampled.

One further warning should be given to conclude this discussion.

When a means of isolating and sampling from a sub-population has been

found, care must still be taken to ensure that the sample is drawn at

random. How this essential requirement can be satisfied in practice
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must be determined on a case-by-case basis, but some potential problems

can at least be highlighted.

Consider, for example, the following three surveys:

L an on-board survey of passengers on selected bus routes;

2. a roadside interview at various points in the city;

3. a mailback survey sent to a random selection of households.

In the first survey, the relevant sub-population might be all transit

riders. However, the need to choose which routes to survey makes achieve-

ment of random drawings of transit users difficult. Some routes may

have a high percentage of elderly users, while others may attract

primarily workers. Furthermore, if a sample is taken on a single day,

some transit users may be interviewed more than once, and such individuals

are likely to have very different characteristics than the rest of the

sub -population.

The same problems arise in the second example, where the objective

would presumably to be to draw randomly from all auto users.

In the third example, the high rejection rate generally associated

with mailback surveys makes attainment of random drawing extremely

difficult. It is often unlikely that people who choose to respond

to mailback questionnaires have the same attribute distribution as the

population as a whole.

4.2.2 Determination of Sub-Population Sizes

Given a population stratification there exist at least four distinct

ways one might determine the sub-population sizes F^, b=l, ...B:

(a) direct measurement; (b) estimation from a random sample; (c)

solution of a set of linear equation^ and (d) estimation with the

choice model. These four approaches are described in more detail.
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a. Direct Measurement : For some stratifications, the sub-population

sizes may be measured directly. Two examples will suffice to illustrate

this approach. First, let the population be the set of residents of an

SMSA and consider stratification by location of their residence within the SMSA.

If each sub-population contains the residents of an integral number of

Census tracts. Census population data will provide relatively accurate

measure of- the sub-population sizes at given points in time. Second,

let the population be the set of individuals making work trips within

the SMSA and consider a stratification by mode. Rush hour transit fare

and highway cordon counts might then provide adequate measures of transit

and auto usage on work trips. (Such counts cannot be perfect measures

as some trips made during rush hour are not work trips, and some work

trips are made at times other than rush hour.)

b. Estimation From a Random Sample : If one draws a random sample of

decision makers from T, then the sample distribution of (i,z) pairs

is a consistent estimator of the population distribution f(i,z). It

follows that for any stratification (C x Z)^, b=l,...B, the fraction of the

random sample who belong to each stratum is a consistent estimate of F . Thus,

given any stratified rule, the associated F values can be estimated if an

auxiliary random sample is available or can be drawn.

One important issue that must be highlighted is that, the cost of a ran-

dom survey designed solely to determine values of , b=l,...B should not be

compared with the costs for random surveys to determine an empirical attri-

bute distribution. The former only requires information from each respondent

sufficient to identify the stratum to which he/she belongs. This typically

will consist of a small set of socioeconomic characteristics and/or the actual
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choice ieC made. The latter survey requires the full set of attributes, typi-

cally including level of service for each alternative in the choice set.

c. Solution from Set of Linear Equations: Recall the identity
B

(8) Y(z) = l 'F ( z | b ) • F

b=l
°

introduced earlier in this section. Let x(z) be any vector valued function

of z. Then, letting E designate the expectation operation, it follows from

(8) that
B

(9) E(x) = l E (x
|

b) • F .

b=l

Imagine that the values E(x) and E(x|b), b=l, ...B were known.

B

Then the vector equation (9) plus the identity S F, = 1 would
b=l

form a set of linear equations in the unknown parameters

F, , b=l
,

...B. In particular, if the x vector has at least
b

|

C |

—

1 (where |c| denotes the number of alternatives in C) compon-

ents, then, given usual linear independence conditions, this set of

equations could be uniquely solved for the F, values.
b

Observe now that if a stratified sample is drawn, the

sample mean of x among those decision-makers belonging to T^

is a consistent estimate for E(x|b). As for the population mean

E(x), these values are, for many x functions, available from

published sources. For example, if the population is the set of

residents of an SMSA, often Census tables will provide the mean

of income, age, education and similar socio-economic and demo-

graphic variables. If the population is the set of automobile

owners in a state, statewide registration figures may provide

mean vehicle age, type, etc. Clearly, the key to determining F
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by solving equations of the form (9), is to search out functions

x(z) for which published population means are available. If one

is imaginative, this search will often be successful.

As an example, return to the simple three mode case, and

suppose one knew from Census data that the average income and auto

ownership in the population were $11,300 and .94 respectively.

Suppose further that one had an on-board survey and roadside inter-

view that provided the following estimated expected values:

Average
Mode Average Income Auto Ownership

1 . Carpool Users $10,000 .8

2. Drive Alone Users 17,000 1.4

3. Transit Users 6,000 .6

In this case, the three modal user groups would be the relevant

strata (corresponding in this case to a choice-based stratifica-

tion). The equations implied by (9) would be:

11,300 = 10,000 F + 17,000 F
2
+ 6,000 F

3

.94 = .8 F, + 1.4 F„ + .6 F n

1 = F + F + F
1 2 3

The resulting solution implied by this would be F^ = .50, F^ = .30,

and F
3

= .20.

It should be noted that the above procedure for determining

F can be implemented using population medians rather than means.

We indicate here only the simplest case. Let z be a scalar,

let x(z) = z, and let zm be the population median of z, assumed

known from published sources. Then it follows from (8) that
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(10) ~ = Y(z ) = l T(z |b)-F
2 m ,

u
. m b

b= 1

For each b=l,...B, the quantity ¥(z
m
|b) is consistently estimated by the

fraction of sampled decision makers belonging to whose z value lies below

z . Using this estimate in (10), a linear equation in F results,
in

We must also point out that when one attempts to solve for

F using eq. (9), the replacement of E(x|b) by a sample estimate

implies that the equations to be solved are no longer exact.

It is also likely that more than the minimal set of
|

C ) — 1 estimated expected

values will be available, in which case the problem of solving (9)

becomes one of finding some "best fit" values of F^ according to some

criterion (e.g. least squares). For both of these reasons, the values of

F that emerge as solutions will themselves only be estimates of the true

F values. This comment of course continues to apply if eq . (10) is used

rather than eq. (9).

Finally, we note that the procedure of solving for F de-

scribed here, differs in an important way from the direct measurement

and random sample estimation methods described earlier. That

is, the present procedure determines F only after the stratified

sample has been drawn, while the others do so prior to the drawing.

This fact represents a drawback to the present procedure because

given a stratification, prior knowledge of F can be useful in

selecting the sample composition H^, b=l, ,..B. Why this is so

will be made clear in Section 4.2.3.

d. Estimation with the Choice Model ; Given a stratified sample and

having specified a parametric form for the choice probabilities
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P (i | z , 0*) , it is usually theoretically possible to jointly estimate the para-

meter vector 0* and the population fractions F.^ This approach is like (c)

above in that it determines F only after a sample has been drawn. It differs

from (a) , (b) , and (c), in that consistency of the F estimates obtained here

depends on the correctness of the parametric model assumed for the choice

probabilities. In contrast, the earlier approaches make no use of the

choice probabilities whatsoever.

4.2.3. Selection Among Alternative Designs

Among the class of all possible stratifications of a popu-

lation, some will not be implementable because relevant sub-popula-

tions can not be isolated or sampled from at random. Others will

not be useable for estimation of the attribute distribution

because the sub-population sizes F cannot be determined. Still,

in most applied contexts there are likely to exist many feasible

stratifications, and for each of these a set of alternative pos-

sible sample compositions. How then should the analyst select among

these?

Unfortunately, relatively little guidance can presently be

given. The choice among sample designs depend of course both on

the relative costs and quality of the approximations

to p associated with different designs. Sampling costs can only

be determined on a case by case basis, so let us concentrate on the

quality of approximation issue.

^See Manski and McFadden ( 1977) for details. Exceptions to the result
are that F cannot be estimated in this way if the sampling is exogenous
or if the choice model has the conditional logit form with alternative
specific constants.
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Consider again the identity

B

(8) Y(z) 5 l Y(z|b)-F
b=l

which forms the basis for stratified sampling estimation of p. On the basis

of (8) , some useful heuristic statements about the accuracy of alternative

designs can be made.

First observe that given a sub-sample size N^, the empirical distri-

bution of z values among the N observations approximates ^ ( z | b ) best when
b

this conditional density has all its mass concentrated on a single z point

—

that is when the sub-population T, is homogenous in z. This suggests that
b

a good stratification is one that separates the population into groups

which are relatively homogenous in z . In general, internal homogene-

ity of the sub-populations can be enhanced by increasing their number, that

is by more finely partitioning C x Z. Note, however, that given a fixed

total sample size, the larger B is, the fewer observations that can be drawn

from each sub-population; hence, the less accurate is each empirical z dis-

tribution as an estimate of the sub-population distribution. Thus, in select-

ing among stratifications, there is a tension between the desire for internal

homogeneity of each sub-population and the need for an adequate number of

observations per sub-population.

Assume now that a stratification has some how been selected. The analyst

must then select a sample composition. Holding the total sample size fixed,

two directives for choosing a composition can be given. First, observe that

the influence of each conditional distribution ( z | b ) on the population dis-

tribution 'f(z) increases directly with the value of F^ . This suggests that.
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all else equal, the larger is, the larger the sample fraction should

be. Second, recall that the more homogeneous is in z, the fewer obser-

vations are needed to achieve any accuracy in estimating 'F ( z | b ) • This sug-

gests that all else equal, the more homogeneous T is, the smaller H should
b b

be

.

Finally, consider the choice of a sample size holding the sample com-

position fixed. It is easy to show that if N observations are drawn from
b

A

sub-population , the empirical distribution 'F (z | b ) is, when evaluated at

any value z , a binomial random variable with mean 'F ( z ) and standard errorJ o o
u

(H'Cz^) ( l-TCz^) ) / • Thus, increasing accuracy may always be obtained

by taking larger samples but as measured by the standard error, accuracy

increases only as — . No general guidance can be offered as to how large

a sample is "large enough." This question must be dealt with on a case by

case basis.

The reader familiar with classical sampling theory will recognize that

the above heuristic statements are extrapolations of well known results on

optimal (i.e., minimum variance) sampling for estimation of a population mean.

Here, interest is in estimating the entire density p(z), not simply the mean

E(z). Hence, the classical results offer guidance but do not apply directly.

There is one further respect, ignored in the above discussion, in which

the present sampling problem may differ from the classical one. That is, in

practice we may only have estimates of the sub-population sizes F, , not the
b

true values. In contrast, the classical literature always assumes that the

true values are available. The consequences of using F estimates in strati-

fied sampling estimation of p(z) have not yet been explored.
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5. SAMPLE DESIGN FOR CHOICE MODEL ESTIMATION

We now turn to the problem of learning the choice probabilities P(i|z).

As mentioned earlier, the literature on discrete choice analysis universally

assumes that these probabilities are a priori specified up to the value of

a finite parameter vector. As before, we will let

0*
* designate the true

value of this vector and let the choice probabilities be written as

*
P(i|z,0 ). It is furthermore generally assumed that the analyst has no prior

*
knowledge of 0 . Section 5.1 summarizes the theoretical literature

on the estimation of 0* given a sample of (i , z) observations and on the de-

sign of samples to be used in such estimation. Section 5.2 then assesses the

practical implications of the existing theory for travel demand analysis.

5.1 THEORETICAL RESULTS

We first briefly review the quite comprehensive literature on choice

model estimation given a sample design. We then present the contrastingly

small set of available results relevant to the problem of selecting among

alternative designs.

5 . 1 . 1 . Estimation Given a Sampling Rule

From the perspective of sample design, the most important proven theo-

retical result on choice model estimation is certainly the following: Subj ect

to certain technical conditions, any stratified sampling rule provides a

*
basis for consistent estimation of 9 .

The above finding emerges from the intensive investigation of maximum

*
likelihood and related methods of estimation of 9 made by Manski and McFadden

(1977), and extended by Cosslett (1977). Maximum likelihood estimation rests,

of course, on a re-interpretation of the sample likelihood as a function of
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those of its determinants which are unknown to the analyst. Consider then

the stratified sampling likelihood originally given in equation (2), and

rewritten here as

( 2 ') L
t> N P(i \z ,9 ) p(z )B b v n 1 n* r n
n tt

b_1 n_1
”J(CxZ )

p (j |y»e )p(y)d(j ,y)

If the attribute density p(z) is a priori known, a maximum likelihood esti-

* *
mate for 9 is obtained by treating L as a function of 0 , and finding the

maximum of this function. Less transparently, if p(z) is unknown, the like-

*
lihood may be treated as a function of the pair of unknowns 9 and p, and

*
maximized jointly over all possible 0 values and all possible attribute den-

sities p. The above maximizations may be carried out in an unconstrained

manner. If the sub-population sizes F^, b = 1,...B are known, the constraints

F
b

=
^(C x Z) |y* e )p(y)d(j ,y) ,b = 1 , . . . B can be imposed,

b

It is shown in Manski and McFadden (1977), and Cosslett (1977), that sub-

ject to technical conditions, all of the above variants of the maximum like-

lihood method yield consistent estimates for 0* whatever the stratified

sampling rule used to generate the data. Among the required technical con-

ditions, there are two of practical importance, one a condition on the prob-

ability model and the other a restriction on the sampling process.

*
The probability model condition is that 0 be identified in the popula-

tion. Roughly, this means that there must exist no vector of parameters other

* *
than 0 which yield exactly the same choice probabilities as 0 for all (i,z)

pairs. Clearly, if there did exist some 0 always yielding the same choice

*
probabilities as 9 , the sample likelihood would always be identical when

*
evaluated at 0 and 0 . Hence, identification in the population is a necessary
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k
condition for consistent estimation of 0 by any estimation method, and any

1
sampling rule.

k
Assume now that 0 is identified in the population. Then the sampling

* ....
process condition is that 0 also be identified in the sample. That is, for

*
a given stratification and sample composition, there must not exist a 0^0

such that, for all possible samples, the likelihood (2') is identical when

k J k
evaluated at 0 and at 0. In practice, if 0 is identified in the population,

it will generally also be identified in the sample as the latter condition

can fail only in atypical sampling processes.

Maximum likelihood estimators are, of course, not the only methods

*
available for estimation of 0 . The reader interested in alternative ap-

proaches is referred to Amemiya (1975), Manski (1975), and Manski and Lerman

(1977), for presentation of some alternative methods suitable in certain con-

texts. Because of their generality of application and their classical asymp-

totic efficiency properties, however, maximum likelihood estimators do occupy

a special place in the literature. This special place will be evident when

we next discuss selection among sample designs , since the available theoreti-

cal results relevant to this question all presume that maximum likelihood

methods will be used in estimation.

5.1.2. Selection Among Sample Designs

We have earlier stated that there exists only a small set of theoretical

results relevant to the problem of selecting a sample design for choice model

estimation. Before describing these results, it will be useful to explain

why significant findings in this area have been so difficult to achieve.

^Failure of this condition constitutes an important motivation for experimen-
tation, See Section 6 for a discussion.

2A
Identification in the sample does not preclude the possibility that in some

realizations of the sampling process, a unique maximum likelihood estimate for

0* will not exist.
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The traditional statistical measure of the precision of an (asymptoti-

cally) unbiased estimator is the (asymptotic) variance matrix of its para-

meter estimates. Maximum likelihood estimates of the choice model parameters

0 are, in general, asymptotically unbiased. Moreover, holding the sample

design and one's prior knowledge of p and F fixed, maximum likelihood esti-

*
mates for 0 are asymptotically efficient, in the sense that the asymptotic

variance matrix of any other asymptotically unbiased estimator must exceed

that of maximum likelihood by a positive semi-definite matrix. From the

above facts, a natural strategy for statistically comparing alternative sam-

ple designs emerges. That is, for given sample size and informational con-

ditions, examine how the maximum likelihood asymptotic variance matrix

changes as a function of the sampling rule used.^ A statistically "good"

sampling rule can then be defined as one yielding a "small" variance matrix,

where smallness of the matrix can be measured by its trace, largest eigenvalue

or some other statistic.

The asymptotic variance matrices of maximum likelihood estimates for

*
0 obtained under alternative exogenous and choice based sampling designs*

2
and various informational conditions are given in Manski and McFadden ( 1977)

.

Inspection of these matrices reveals the following:

(i) For given prior information on p and F used in estimation, the rela-

tive precision of alternative sampling rules depends on the unknown value

of 0*. In particular, no design is uniformly best across the possible

values of 0*. This implies that the optimal sampling rule will depend on

the true value of 0*, which, if we knew in the first place, would obviate

the need for sampling altogether.

1
We note that under all stratified sampling rules, the asymptotic standard error

of 0* estimates decrease with sample size at the rate */ N

while these authors do not present variance matrices for stratified designs

other than choice based and exogenous ones, the findings reported below extend

to such designs directly.
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(ii) For a given value of 0 , the relative precision associated with al-

ternative sampling rules depends on what prior information on p(z) and

F is used in estimation. In particular, knowledge of either the distri-

bution of attributes, or the shares of the population in each strata will

decrease the variance of the parameter estimates , except that knowledge

of p alone is valueless if exogenous sampling is used.

JL

(iii) For given 0 and p-F information, the maximum likelihood asymp-

totic variance matrix is, except in some special cases, an analytically

complicated function of the sampling rule. Hence, a ranking of rules

by precision is usually difficult to achieve.

These three facts constitute the source of the problems researchers at-

tempting to statistically compare alternative sample designs have faced. It

should be noted that these problems are not peculiar to choice model estima-

tion. In fact, they apparently arise in all non-linear modelling contexts.

The reader familiar with the strong findings of classical sampling theory and

expecting similar results here should recall that the classical theory pre-

2
sumes the relatively simple linear model Y = x8 + £ , E(e|x) = 0, V(e) ~ o G

2
with G known and 8 and a to be estimated. The classical results do not apply

outside this model, for example, even if the only change is to make G unknown.

^

With the above as prelude, the theoretical results on sample design that

have been achieved are now described. We first present the available analy-

tical results, then the findings of some Monte Carlo experiments.

a. Analytical Results : The primary available analytical results concern

the relative estimation precision obtained under alternative exogenous sampling

designs when neither p nor F is known, and when the choice probabilities have

the form
JL. JL. -A. JL.

(11) P(i !z,e ') = D( (z
t

- z )cp + (Y.-Y.), j € C)

1
The classical results for the linear model are given in Rao (1973).
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* * *
where 0 = (<j>, y , j£C) and where the function D is strictly increasing in

*
each of its arguments. In this case, each Y ^ , jeC is an alternative speci-

fic constant, or dummy variable. All random utility models for which the

* *
utilities U. are defined to be U. = z.d) + y. + £ . , where (£., i£C) are

1 1111 l

independent and identically distributed disturbances, yield choice probabili-

ties satisfying (11). In particular, the conditional logit model is a

member of this class.

Given the above assumptions, Manski (1978), investigates the maximum

&
likelihood asymptotic variance matrix for 0 estimates under the hypothesis

*
<j) =0. It turns out that under this hypothesis, this usually complex matrix

takes on a relatively simple form. In particular, if the choice set contains

*
two alternatives or if y. = 0, all j£C, then the asymptotic variance matrix

-1 1

becomes ^ where a >0, N is the sample size, I is the |c| - 1

ieC j

expected sampling variance in attributes across alternatives in the choice set.

It follows from the above that, given the assumptions imposed, a good

exogenous sampling design is one in which the decision-makers drawn face widely

disparate alternatives within their choice sets, in the sense that the expected

£ £ (z. - z.)'(z. - z.) is "large". This is a rather intuitive result,

i£Cj£C 1 J 1 J

particularly as it is analogous to the classical result for the standard

linear model. Since the assumptions made in the present case are so stringent,

however, the practical usefulness of the result should be questioned.

Actually, the work described here does have one important application.

In practice, one sometimes is interested in determining whether a given choice

model is informative, in the sense that it non-trivially explains some part of

choice behavior. In the context of models of the form (11), a specification

dimensional identity matrix, and V(z) = E( £ J (z. - z.) (z. - z.) ) is the
l J l j£C J
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is informative if and only if 4> J 0. Given this, one may wish to design a

-k

sample suitable for the purpose of testing against the null hypothesis (p JO.

For this purpose, the Manski (1978) results describe the characteristics of

a good sample design.

Having offered a legitimate application, we now give a word of caution.

It is tempting to extrapolate from the special case described here and con-

clude that in exogenous sampling a large attribute variance among the alter-

natives in a choice set is always desirable. This, however, is not the case.

In particular, consider the simple one parameter binary choice logit

model

The asymptotic variance of the exogenous sampling maximum likelihood estimate
a.

2

x
1 i i

for 0 can then be shown to be —
( E —

“

L

0 z. .

e ij -1
Inspection of the

( 1 + e
6 Z

i j)
2

operand in the above expression reveals that if 0 JO, then
a-

2

lim
I z . . I-* <*>

1 iJ 1

9 z . .

z . .
• e l j

JJ ,

(1 + e ij)

—j- 2 - 0 from which it follows that the value of |z„

minimizing the variance of the 0 estimate is finite. On the other hand, if

£
0 =0, then in accord with this discussion of this section, we find that

„ 0 z

.

z. . . e
_JJ

ij
2

z . .

ij

© z.

(1 + e 1J
)

2

implying that the variance of the 0 estimate is an everywhere decreasing

function of I z .

.

.
1

iJ
1

To close out this discussion, we call attention to a simple result on
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choice based sampling which highlights the role of prior information on p (z)

and F in determining the relative efficiency associated with alternative de-

signs. It can easily be shown that if p(z) is known, then the best choice

based sampling design is one in which all observations are drawn from a

single sub-population T.. That is, the best design has all observations

drawn from users of a single alternative. (Which alternative it is best to

*
draw from depends on the value of 0 , however.) On the other hand, if p(z)

is not known, then the best design must satisfy the condition > 0, all

j£C. In fact, a design not meeting this requirement will often not even suf-

* 1fice to identify 0 in the sample.

b. Monte Carlo Findings : Cosslett (1978b) has been using Monte Carlo experi-

ments to study the relative estimation precision associated with alternative

choice based sampling designs in the context of single parameter binary choice

models. If the choice set contains the two alternatives (i,j) and sampling

is choice based, the analyst's control variable for sample design is the

sample fraction H.. Assuming that the choice probabilities have the logit,

probit, or arctan form and that p(z) is unknown, Cosslett examines how the

*
asymptotic variance of 0 changes as a function of H. and of one s prior

knowledge of F^ . While Cosslett 's work is still ongoing and while Monte Carlo

findings cannot be conclusive, two interesting tentative findings can be cited.

First, it appears that when F is not known, good designs are ones which

place close to — . This conclusion is quite strong in the logit and probit

models, less so in the arctan one. On the other hand, when F is known, it

appears optimal to oversample the rare alternative, that is to set H. > y
if

The first result occurs because in the case of p known, the information matrix
(i.e., the inverse of the variance matrix of the estimates) is linear in the
values. On the other hand, when p is unknown, this matrix turns out to be linear
in _1_

H,
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Second, the usefulness of knowledge of F seems evident. Holding the

*

sample design fixed, such knowledge reduces the variance of the 9 estimates

substantially in Cosslett's experiments.

5.2 PRACTICAL CONCERNS

We have seen that the existing theoretical literature on choice model

estimation is very successful in offering the analyst methods for estimating

6 . The literature is, contrariwise, very weak in providing guidance on how

one should select among alternative sample designs. Relatively few results

are available and it appears that relatively little can be learned. To place

the literature in appropriate applied perspective, the basic assumptions of

existing theory must first be understood and interpreted.

Two assumptions characterize the existing estimation theory. First, the

analyst is presumed able to a priori specify the functional form of the choice

model; the only estimation problem is associated with the value of the para-

*
meter vector 0 , This assumption is extremely useful because the data require-

ments for parametric analysis are considerably smaller thap for non-parametric

*
analysis. Second, one is presumed to have no prior knowledge of 0 whatsoever.

This assumption is standard in classical statistical analysis.

From the perspective of applications, the foregoing two idealized assump-

tions stand in interesting contrast. On the one hand, it is undoubtedly overly

optimistic to suppose that in practice one can correctly place the choice

probabilities in a known parametric family. Behavioral theory and empirical

observation will usually let one put some structure on the choice probabilities.

1
Although it should be noted that not all the estimators discussed above have
been programmed in available econometric software.
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but not the very exacting structure implied by a parameterization. On the

other hand, having specified a parametric family, it will often be too pessi-

*
mistic to assert that the analyst is totally ignorant about 0 . Loosely,

*
0 characterizes tastes and we usually do have some prior knowledge of what

people 's tastes are.

With the above as background, three general comments relevant to sampling

practice can be offered.

First, in designing a sample for choice model estimation, concern with

*
estimability, that is the ability of the design to support estimation of 0

at all, should dominate worry about estimation precision. This advice is

given for a very simple reason. That is, estimability is a necessary require-

ment before precision can even become an issue.

Second, to the extent that one does become concerned with the relative

precision of alternative designs, the classical statistical framework assumed

in the existing theoretical literature should be applied sensibly rather than

*
dogmatically. If the analyst has prior information about the value of 0 ,

he should use it in selecting among designs. ^ If he views his choice model as

only an imperfect approximation of reality, he should recognize that theore-

tical results comparing designs can themselves hold at most approximately.

If the classical measure of estimation precision, that is the asymptotic var-

iance matrix, differs from the measure he feels most desirable, he should

understand that a classical ranking of designs may not be most appropriate.

Third, it should be understood that the problems of describing p and

*
estimating 0 , while formally distinct, are nevertheless related in various

ways. For one thing, prior knowledge of F is both necessary to describe p

*
and useful in estimating 0 . For another, the F values can in theory

A formal framework for incorporating such prior information is provided by

Bayesian analysis. See Section 7 for further discussion.
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be estimated along with 0 and then used in describing p. (Such joint esti-

*
mation of F and 9 is possible except when the sampling is exogenous or the

choice model has the conditional logit form. See Manski and McFadden, 1977.)

Perhaps most important, the same data sample is often used both to describe

*
p and estimate 0 . When such dual use is intended, the sample design selected

must be suitable for both objectives.
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6. DESIGN OF EXPERIMENTS

Consider a proposed policy whose effect, if implemented, would be to

create a travel environment which differs in some way from that currently

faced by decision makers. To forecast the impact of such a policy on travel

behavior, the choice probabilities which would prevail under the new travel

environment must of course be known. However, in the absence of historical

experience, these probabilities may not be a priori known, nor estimable from

data on current travel choices.

For example, suppose one were interested in forecasting how the intro-

duction of buses with wheelchair lifts into an area without such buses would

influence transit usage. In a mode choice model, any parameters relating to

the desirability of buses with lifts would not be estimable from

pre-introduction data. In such contexts, where the choice probabilities

cannot be inferred from existing data, it may be useful to subject a sub-

set of the decision making population to the policy of interest, observe

their subsequent behavior and then infer the required choice probabilities

from these observations. That is, it may be useful to perform an experiment.

Within the framework of discrete choice analysis, an experiment, like

a permanent policy change, can be viewed formally as a function y(z) changing

each decision maker's present attribute value into some new value.

By combining information about the population's behavior under the pre-

experiment attributes z and their behavior under the post-experiment attributes

y(z), the set of choice probabilities for any attribute vector in the ori-

ginal range of attributes ZQ or in the post-experiment range Zj = (y(z),zeZ
o

)

can, in theory, be inferred.
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It is natural to ask how one should design an experiment so that it will

be informative regarding the consequences of policies of interest. This im-

portant question has not previously been addressed in the discrete choice

literature. To begin what should eventually be an extensive investigation,

Section 6. 1 offers a few simple theoretical results relevant to the de-

sign of experiments. Section 6.2 then discusses some practical concerns that

arise in experimentation.

Before proceeding, we should point out that experimentation has uses

beyond the discrete choice applications discussed here. In particular, experi-

ments may be used to determine what consequences a policy change would actually

have for the attribute distribution. That is, when the function y(z) associated

with a policy change is unknown, experimentation may enable one to learn this

function. Many of the experiments carried out in UMTA's Service and Methods

Demonstration Program have this objective. Experiments performed for such pur-

poses will not be discussed further in this paper.

6.1 THEORETICAL RESULTS

The role of experiments within the existing theory of choice model esti-

mation can be easily described. Assume as usual that the choice probabilities

(P(i | z) , z£Z) have been placed in a parametric family indexed by 0 . Let there

exist a proposed policy of interest which would map Z^ onto an attribute set

Z^and assume that the choice probabilities (P (i |z ),z eZ
^ )can themselves be

parametrized by 9 . Consider now a situation in which some subset
0^ of 9

is not identified in the present population described by f(i,z) = P(i|z,9 )p(z)

but is identified in the post policy population described by

f(i,z) = P(i|z ,9 )p(z). Hence, forecasting post policy behavior requires

* *
that

0^ be known* but
0^ cannot be inferred from observations of present choices.

From this, the objective of experimentation emerges, that is to modify the
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present attribute distribution in such a way that
0^

is identified in the post-

experiment population.

The above discussion is quite abstract. Let us therefore describe some

*
simple examples of applied importance. Let z^ = ( zoti > z

iti^’
®

* * *

(^o’^l 5 Y^»i£C) and assume that the choice probabilities P(i|z) are derived

& &
from the random utility model U .

= Y. +
<J)tx 1 o

z . + d), • z. . + e . where
oti Y

1 lti ti

(e . ieC) has some given probability distribution. Consideration of four
1 1 j

problems within this context will serve to indicate some of the uses of

experiments.

(i) Assume that for each teT, z 1t .
= z, . for all i, ieC. That is,

lti ltj

alternatives are, for each decision-maker, completely homogenous along

*
the z^ attribute. Clearly,

4>^
is not then identified. If we wish to

forecast behavior under a policy which makes alternatives heterogenous

*
along the z^ attribute, knowledge of

<f>
is necessary. For example,

local regulatory policy tends to create taxi fares which are uniform

across operators in a given area. In a model of choice of which taxi

*
company people call for service, a coefficient (corresponding to (J)^) for

*
the effect of taxi fare (corresponding to z

^
) could not be estimated.

(ii) Assume that for all s , teT and all ieC,z .
= z .. That is, the

lti 1 si

z^ attributes are constant across decision-makers. In this case the com-

* * *
posite parameters (y^ + <|)^z ieC may be identified, but not the Y-j/s

and
<J) separately. If we wish to forecast behavior under a policy which

makes the z^ attributes heterogenous across decision-makers or one which

* *
simply changes the z^ values uniformly, the y^ and <|) parameters must be

known. An example of this is if z^
t
were a dummy variable in a mode

choice model which indicated whether or not a mode was characterized as
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demand responsive. Since most urban areas do not offer demand respon-

sive service, and the auto mode by its very nature is demand responsive,

it would be impossible to distinguish the effect on utility of an auto-

mobile constant from that of a dummy variable describing whether or not

a mode was demand responsive. Only a composite automobile /demand re-

spQnsive constant could be estimated.

iii) Assume that for each teT and ieC, Z
Qt±

= az
i t i

+ ^ for some a and ^

That is, the z and z, attributes are perfectly correlated. Now
o 1

^ ft

<()*a + 4
.* may be identified but not 4 >

q
and ^ separately. If we wish to

forecast behavior under a policy which makes and z^ less than per-

fectly correlated or one which simply changes the a constant, the values

<J

* and <J)* must somehow be learned. One example of this might occur in

small cities with metered taxis and zonal bus fares. In such cases, it

is conceivable that fares by taxi and bus would be perfectly correlated

with in-vehicle travel times; car operating costs and times would be

similarly correlated. In this case, it would be impossible to estimate

separate time and cost effects; only a composite coefficient for the

sum of cost and in-vehicle time could be estimated.

iv) Assume a choice keC is entirely unavailable to a population, and

P(k z) would always therefore be zero. In this case, if z .
= z for

1 lti Itj
* *

all i, jeC, i, jfk, then and y, would not be estimable. For example,
1 K.

some small cities may not have any transit service. In this case, the

parameters of all the transit specific variables would not be estimable,

including the transit constant. Some parameters, such as that for generic

travel time, however, could be estimated from existing choices among car-

pooling, driving alone and taxi.
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Appropriately designed experiments can solve each of the above problems.

For example, one might in each case subject a subset of the decision making

population to a scaled down version of the intended policy. However, such a

strong correspondence between experiment and policy is not necessary. Any

modification of the present attribute distribution which renders the relevant

parameters identified will suffice.

Return now to our abstract discussion of experimental design. Given a

•k

set of experiments each of which can identify 0^, it remains to ask how one

should select among this set. This question has a very simple formal inter-

pretation. Each experiment one can conduct produces some new attribute dis-

tribution. Given this, the problem of selecting a good experiment becomes

one of selecting a good attribute distribution. The latter problem is ob-

viously closely related to the sample design problem treated in Section V

but has not itself been investigated thus far.

6.2 PRACTICAL CONCERNS

In most respects, the practical concerns that arise in designing an ex-

periment are analogous to those that arise in designing a sample for choice

model estimation. The experimental design problem does, however, have one

aspect that does not appear when sampling. That is, a duration for the ex-

periment must be selected.

If it could be shown that people react quickly to changes in their travel

environments, the duration question would be of little consequence. However,

there exists ample anecdotal evidence that adjustments to new conditions occur

only slowly. Moreover, the adjustments people make when they believe a change

is temporary may differ from those they make when they think one is permanent.

Existing discrete choice theory, being static, obviously can offer no

guidance on the selection of an experiment's duration. The nascent dynamic
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choice theory cited in Section 1. could potentially provide such guidance but

will require considerable development before it becomes useful in practice.

A second practical issue arises when none of the four theoretical con-

ditions for non-identification discussed in Section 6.1 holds entirely, but

one or more is nearly true. That is, while it may be theoretically possible

to estimate all the parameters of interest, some estimates may be extremely

unreliable. In such situations, it might prove useful to conduct an experi-

ment which increases the range of an attribute or makes a particular alter-

native available to more decision makers.

For example, even in a fixed fare system, there may be some variation

in transit fares due to people having to transfer to make certain trips

(assuming, of course, that transfers are not free). However, while this

variation in transit fare may theoretically identify a parameter for tran-

sit fare in a mode choice model, the reliability of the parameter estimate

may be extremely low. In this case, a zone fare experiment on selected

routes would be a useful way to improve predictions of more extensive fare

policy changes.

To conclude this section, we should comment on the substantial differ-

ence between the use we have advocated for experiments and a more traditional

view of experimentation. Traditionally an experiment is performed to test

for the existence of an "effect" when a single factor in the environment is

changed. No explicit model is assumed and proper inference requires that the

factor of interest be the only one that changes over the duration of the ex-

periment. Otherwise, the effect may be "confounded". Here, in contrast, an

^In practice, confounding is very difficult to avoid in transportation experi-
ments as the real world environment in which such experiments are conducted
does not permit ceteris paribus conditions.
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experiment is a mechanism for learning the values of parameters in a formal

model. There is no restriction on the number of factors changing during the

experiment, whether by design or otherwise. Proper inference from the experi-

ment requires only that the changes that do occur either be observed or, if

unobserved, satisfy appropriate statistical conditions so that the assumed

probabilistic choice model continues to describe behavior.
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7. DIRECTIONS FOR FUTURE RESEARCH

A reading of this paper indicates that the state of the art of sample

design for discrete choice analysis is advanced in some respects and primi-

tive in others. It is important to note that many of the results reported

here are quite recent and that further work will undoubtedly resolve some

of the questions raised in the report. Discrete choice analysis is still

a quickly growing area of knowledge and future work on sample design problems

will hopefully make more precise statements about alternative sampling strat-

egies possible. A large set of useful directions for future research may be

enumerated.

With regard to estimation of the attribute distribution, research in

three areas would seem particularly productive. First, there is a need for

a better understanding of the relative merits of the various methods for

determining the population shares F and of the implications of using estimated

F values in estimating the attribute distribution. Second, more formal sta-

tistical criteria for comparing alternative stratified sample designs should

be developed. Third, ways to use various forms of prior knowledge of the

attribute distribution in the estimation process should be researched. In

particular, while interested in the current attribute distribution, one often

has available knowledge of this distribution at some past time. Duguay, Jung,

and McFadden (1976), have developed an interesting but ad hoc approach to up-

dating such past attribute distributions using available aggregate data on

current conditions. Work aimed at assessing the properties of their method

would be useful.

In the area of choice model estimation, extensions of the classical type

analytical work of Manski (1978) and Monte Carlo tests of Cosslett (1978b)
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would be of some use. Of potentially greater value, however, would be work

aimed at replacing the classical sample design framework assumed in the

existing discrete choice literature with a more powerful one. In particular,

the Bayesian approach offers such a framework. Adoption of this approach

*
would provide a means of incorporating prior information on 6 into both the

sample design and choice model estimation process. Additionally, the statis-

tical decision theory aspect of Bayesian analysis offers a wide variety of

sampling strategies outside of the stratified sampling rules applied to date.^

The field of experimentation offers some of the most interesting challenges

for future research. In particular, there presently exists no theoretical basis

for selection among alternative experimental designs. While we have previously

stated that the experimental design problem seems similar to that of sample

design, the exact relation between the two problems is not clear. A second

important issue in experimentation regards the selection of a duration for the

experiment. Consideration of this question ultimately leads one to be con-

cerned with the dynamics of choice behavior and thus beyond the static dis-

crete choice framework assumed in this paper.

As a final direction for future work, recall that the attribute space Z

is assumed a priori defined in this paper but that its structure is actually

under the control of the analyst through his decisions to collect data on

some attributes but not others. Research aimed at providing guidance to aid

the analyst in these decisions could prove quite useful.

For an extensive treatment of the Bayesian approach, see DeGroot (1970).
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Report of Inventions Appendix

Although a diligent review of the work performed under this

contract has revealed that no new innovation, discovery, or inven-

tion of a patentable nature was made, this report summarizes recent

advances in the theory of sample design for discrete choice analysis

and presents some theoretical results and practical guidelines which

are new and have not been previously reported. For example. Section

4 on sample design for description of the attribute distribution con-

cludes with some heuristic guidance for selecting among alternative

sampling strategies. Section 5 presents guidance on sample design for

choice model estimation based on new analytical results and the find-

ings of recent Monte Carlo experiments. Section 6 presents some novel

ideas on the role and design of experiments to learn about the values

of probabilistic choice model estimation.
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